张召富

ZHANG ZHAO FU

职称/学术兼职

研究员 博导

学术兼职:

1. 担任第29届非晶和纳米晶半导体国际会议(ICANS29)分会主席(Session Chair)

2. 担任betway必威学报(理学版)青年编委,2022-2025(中文核心)

3. 担任国产期刊InfoMat青年编委,2023-2025(一区,Q1,影响因子24.8)

4. 担任国产期刊Rare Metals青年编委, 2021-2023(一区,Q1,影响因子6.3)

5. 担任国产期刊Materials Futures青年编委, 2022-2023

6. IEEE Member

7. 担任二十余个SCI期刊审稿人

职位

联系方式

zhaofuzhang@whu.edu.cn

主要研究方向

 

  • 宽禁带半导体(GaN, SiC, Diamond, Ga2O3, AlN等)材料、器件、工艺、系统的多场多尺度建模仿真与集成

  • 基于第一性原理计算和机器学习的新型材料与器件的理性设计与应用

  • 半导体材料的缺陷、界面、金属接触特性的建模仿真,及其对器件性能影响

  • 宽禁带半导体功率器件界面等关键工艺设计与开发

  • 宽禁带半导体器件制备与表征,半导体器件物理

 

欢迎宽禁带半导体器件、电子器件建模仿真、计算材料学、新型半导体材料、半导体器件物理等背景的同学来联系报考(保送、考研)硕士和(考核)博士研究生。请申请者发送PDF格式简历与代表作至本人邮箱,标题应为“申请硕士/博士-姓名-毕业学校”,简历应为英文。

教师个人主页:http://jszy.whu.edu.cn/zhangzhaofu1/zh_CN/index.htm

 

教育工作经历

教育经历:
2014.8-2018.11,香港科技大学,电子及计算机工程学系,Ph.D
2010.9-2014.6,南开大学,微电子学专业,理学学士

工作经历:
2022.5起, betway必威,研究员
2019.1-2022.3,剑桥大学电子工程系,Research Associate

 

论文发表和专利

致力于电子材料与器件设计相关领域,已经在Appl. Phys. Lett., IEEE Trans. Electron Devices, ACS Appl. Mater. Interface, Adv. Funt. Mater., Nat. Comm.等期刊发表SCI期刊论文100余篇,其中第一/通讯作者60余篇;以第一作者发表国际会议论文共20篇,包括电子器件领域国际最顶级学术会议论文IEDM 1篇和特邀报告2篇;参与撰写Wiley英文专著章1章节;谷歌学术h-index为29,引用2600余次。完整文章列表参考:

谷歌学术链接:https://scholar.google.com/citations?user=GqUdqyIAAAAJ&hl=en

ResearchGate链接:https://www.researchgate.net/profile/Zhaofu-Zhang-4/research

Web of Science链接:https://www.webofscience.com/wos/author/record/1990500

专著:

J. Robertson, Z. Zhang, Chapter: “Electronic Structure of Transparent Amorphous Oxide Semiconductors”, Chapter 3 in “Amorphous Oxide Semiconductors”, edited by H. Hosono, Wiley, West Sussex, UK (2022).

 

职后期刊文章(#共同一作者; *通信作者):

[1] (Editor’s Pick) J. Chen, Z. Zhang, Y. Guo, and J. Robertson*, Revisiting the electronic and optical properties of SiO2 polymorphs by hybrid functional calculations, J. Appl. Phys. 133, 044101 (2023)

[2] H. Guo, Y. Yin, W. Yu, J. Robertson, S. Liu, Z. Zhang*, Y. Guo*, Quantum transport of sub-5 nm InSe and In2SSe monolayer and their heterostructure transistors, Nanoscale 15, 3496 (2023)

[3] C. Cheng#, Z. Zhang#, X. Sun, Q. Gui, G. Wu, F. Dong, D. Zhang, Y. Guo*, S. Liu*, Ab-initio study of Schottky barrier heights at metal-diamond (111) interfaces, Appl. Surf. Sci. 615, 156329 (2023)

[4] X. Wan, Z. Zhang, A. Wang, J. Su, W. Zhou, J. Robertson, Y. Peng, Y. Zheng*, and Y. Guo*, Deep-Learning-Assisted theoretical evaluation of Compatibility of Eco-friendly Insulation Medium CF3SO2F with Cu, Al, CuO, Al2O3, and epoxy resin, High Voltage (2023)

[5] Q. Gui, Z. Wang, C. Cheng, X. Zha, J. Robertson, S. Liu, Z. Zhang*, Y. Guo*, Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate, Appl. Phys. Lett. 121, 211601 (2022)

[6] Y. Yin, Z. Zhang*, C. Shao, J. Robertson, Y. Guo*, Computational Study of Transition Metal Dichalcogenide Cold Source MOSFETs with Sub-60 mV per decade and Negative Differential Resistance Effect, NPJ 2D Mater. Appl. 6, 55 (2022)

[7] X. Wan#, Z. Zhang#, W. Yu, H. Niu, X. Wang, Y. Guo*, Machine-Learning-Assisted Discovery of Highly Efficient High Entropy Alloy Catalysts for the Oxygen Reduction Reaction, Patterns 3, 100553 (2022)

[8] J. Chen, Z. Zhang*, Y. Guo, J. Robertson, Metal Contacts with Moire interfaces on WSe2 for Ambipolar Applications, Appl. Phys. Lett. 121, 051602 (2022)

[9] R. Cheng, L. Yin, Y. Wen, B. Zhai, Y. Guo, Z. Zhang, W. Liao, W. Xiong, H. Wang, S. Yuan, J. Jiang, C. Liu, and J. He, Ultrathin ferrite nanosheets for room-temperature two-dimensional magnetic semiconductors, Nat. Comm. 13, 5241 (2022)

入职前部分文章:

[1] Z. Zhang, Y. Guo, and J. Robertson*, Reduced Fermi Level Pinning using Physisorptive Moire-MoS2/Metal Schottky Barriers, ACS Appl. Mater. Interface 14, 11903 (2022)

[2] Z. Zhang, Y. Guo, and J. Robertson*, p-Type Semiconduction in Oxides with Cation Lone Pairs, Chem. Mater. 34, 643 (2022)

[3] Z. Zhang, Z. Wang, Y. Guo, and J. Robertson*, Carbon Cluster Formation and Mobility Degradation in 4H-SiC MOSFETs, Appl. Phys. Lett. 118, 031601 (2021)

[4] Z. Zhang, Y. Guo, and J. Robertson*, Termination-dependence of Fermi level pinning at rare-earth arsenide/GaAs interfaces, Appl. Phys. Lett. 112, 251602 (2020)

[5] Z. Zhang, Y. Guo, H. Lu, S. Clark, and J. Robertson*, Hybrid band offset calculation for heterojunction interfaces between disparate semiconductors, Appl. Phys. Lett. 116, 131602 (2020)

[6] Z. Zhang, Y. Guo and J. Robertson*, Chemical bonding and band alignment at X2O3/GaN (X=Al, Sc) interfaces, Appl. Phys. Lett. 114, 161601 (2019)

[7] Z. Zhang, Q. Qian, B. Li, and K. J. Chen*, Interface Engineering of Monolayer MoS2/GaN Hybrid Heterostructure: Modified Band Alignment for Photocatalytic Water Splitting Application by Nitridation Treatment, ACS Appl. Mater. Interfaces 10, 17419 (2018)

[8] Z. Zhang, R. Cao, C. Wang, H. Li, H. Dong, W. Wang, F. Lu, Y. Cheng, X. Xie, H. Liu, K. Cho, R. Wallace, and W. Wang*, GaN as an Interfacial Passivation Layer: Tuning Band Offset and Removing Fermi Level Pinning for III-V MOS Devices, ACS Appl. Mater. Interfaces 7(9), 5141 (2015)

[9] Z. Zhang, Y. Guo, and J. Robertson*, Electronic structure of amorphous copper iodide: A p-type transparent semiconductor, Phys. Rev. Mater. 4, 054603 (2020)

[10] Z. Zhang, Y. Guo, and J. Robertson*, Origin of Weaker Fermi Level Pinning and Localized Interface States at Metal Silicide Schottky Barriers, J. Phys. Chem. C 124, 19692 (2020)

[11] Z. Zhang, B. Li, Q. Qian, X. Tang, M. Hua, B. Huang, and K. J. Chen*, Revealing the Nitridation Effects on GaN Surface by First-Principles Calculation and X-Ray/Ultraviolet Photoemission Spectroscopy, IEEE Trans. Electron Devices 64(10), 4036 (2017)

[12] Z. Zhang#,*, B. Huang#, Q. Qian, Z. Gao, X. Tang, and B. Li*, Strain-tunable III-Nitride/ZnO heterostructures for photocatalytic water-splitting: A hybrid functional calculation, APL Mater. 8, 041114 (2020)

[13] Z. Zhang, M. Hua, J. He, G. Tang, Q. Qian, and K. J. Chen*, Ab-initio Study of the Impact of Nitridation at Amorphous-SiNx/GaN Interface, Appl. Phys. Express 11, 081003 (2018)

[14] Z. Zhang, Y. Guo, and J. Robertson*, Phase dependence of Schottky barrier heights for Ge-Sb-Te and related phase change materials, J. Appl. Phys. 127, 155301 (2020)

[15] Z. Zhang, Y. Guo, and J. Robertson*, Role of the third metal oxide in In–Ga–Zn–O4 amorphous oxide semiconductors: Alternatives to gallium, J. Appl. Phys. 128, 215704 (2020)

[16] Y. Liao#, Z. Zhang#,*, Z. Gao, Q. Qian, and M. Hua*, Tunable properties of novel Ga2O3 monolayer for electronics and optoelectronics applications, ACS Appl. Mater. Interfaces 12, 30659 (2020)

[17] J. Zhao#,*, X. Wang#, H. Chen, Z. Zhang*, and M. Hua,Two-Dimensional Ferroelectric Ga2O3 Bilayers with Unusual Strain-Engineered Interlayer Interactions, Chem. Mater. 34, 3648 (2022)

[18] Y. Yin, Z. Zhang*, H. Zhong, C. Shao, X. Wan, C. Zhang, J. Robertson, and Y. Guo*, Tellurium Nanowire Gate-All-Around MOSFETs for Sub‑5 nm Applications, ACS Appl. Mater. Interfaces, 13, 3387 (2021)

[19] Y. Yin, C. Shao, C. Zhang, Z. Zhang*, X. Zhang, J. Robertson and Y. Guo*, Anisotropic Transport Property of Antimonene MOSFETs, ACS Appl. Mater. Interfaces, 12, 22378 (2020)

[20] X. Liu, Z. Gao, V. Wang, Z. Luo, B. Lv, Z. Ding*, and Z. Zhang*, Extrapolated Defect Transition Level in Two-Dimensional Materials: The Case of Charged Native Point Defects in Monolayer Hexagonal Boron Nitride, ACS Appl. Mater. Interfaces 12, 17055 (2020)

[21] (封底文章) J. Zhao#*, X. Huang#, Y. Yin#, Y. Liao, H. Mo, Q. Qian, Y. Guo, X. Chen, Z. Zhang*, and M. Hua*, Two-Dimensional Gallium Oxide Monolayer for Gas Sensing Application, J. Phys. Chem. Lett. 12, 5813 (2021)

[22] (封面文章) X. Wan, Z. Zhang*, W. Yu, and Y. Guo*, A density-functional-theory-based and machine-learning-accelerated hybrid method for intricate system catalysis, Materials Reports: Energy 3, 100046 (2021)

[23] Z. Wang#, Z. Zhang#, S. Liu, C. Shao, J. Robertson, Y. Guo, Impact of Carbon-Carbon Defects at the SiO2/4H-SiC (0001) Interface: A First-Principles Calculation J. Phys. D: Appl. Phys. 55, 025109 (2021)

[24] Z. Wang#, Z. Zhang#, S. Liu, J. Robertson, and Y. Guo*, Electronic properties and tunability of the hexagonal SiGe alloys, Appl. Phys. Lett. 118, 172101 (2021)

[25] (热点文章) H. Guo#, Z. Zhang#, B. Huang, X. Wang, H. Niu, Y. Guo, B. Li, R. Zheng, and H. Wu*, Theoretical study on the photocatalytic properties of 2D InX(X=S, Se)/transition metal disulfide (MoS2 and WS2) van der Waals heterostructures, Nanoscale 12, 20025 (2020)

[26] J. Chen, Z. Zhang*, Y. Guo, J. Robertson, Electronic properties of CaF2 bulk and interfaces, J. Appl. Phys. 131, 215302 (2022)

[27] J. Chen, Z. Zhang*, Y. Guo and J. Robertson, Schottky Barrier Heights of Defect-free Metal/ZnO, CdO, MgO and SrO Interfaces, J. Appl. Phys. 118, 172101 (2021)

[28] Q. Zhou#, Z. Zhang#, H. Li, S. Golovynskyi, X. Tang, H. Wu, J. Wang, and B. Li*, Below bandgap photoluminescence of an AlN crystal: Co-existence of two different charging states of a defect center, APL Mater. 8, 081107 (2020)

[29] Z. Wang#, Z. Zhang#, C. Shao, J. Robertson, S. Liu*, and Y. Guo*, Tuning the high-κ oxide (HfO2, ZrO2)/4H-SiC interface properties with a SiO2 interlayer for power device applications, Appl. Surf. Sci. 527, 146843 (2020)

[30] H. Guo#, Z. Zhang#,*, Y. Guo, Z. Gao, R. Zheng, and H. Wu*, Impact of the interface vacancy on Schottky barrier height for Au/AlN polar interfaces, Appl. Surf. Sci. 505, 144650 (2020)

[31] (ESI热点文章)H. Niu, Z. Zhang*, X. Wang, X. Wan, C. Shao, and Y. Guo*, Theoretical Insights into the Mechanism of Selective Nitrate-to-Ammonia Electroreduction on Single-Atom Catalyst, Adv. Funct. Mater. 31, 2008533 (2021)

[32] X. Wan, W. Yu, H. Niu, X. Wang, Z. Zhang*, and Y. Guo*, Revealing the Oxygen Reduction/Evolution Reaction Activity Origin of Carbon-Nitride-Related Single-Atom catalysts: Quantum Chemistry in Artificial Intelligence, Chem. Eng. J. 307, 121201 (2022)

[33] (ESI高被引文章)H. Niu#, X. Wan#, X. Wang, C. Shao, J. Robertson, Z. Zhang*, and Y. Guo*, Single-Atom Rhodium on Defective g-C3N4: A Promising Bifunctional Oxygen Electrocatalyst, ACS Sustainable Chem. Eng. 9, 3590, (2021)

[34] (ESI高被引文章)H. Niu, X. Wang, C. Shao, Z. Zhang*, and Y. Guo*, Computational Screening Single-Atom Catalysts Supported on g-CN for N2 Reduction: High Activity and Selectivity, ACS Sustainable Chem. Eng. 8, 13749 (2020)

[35] X. Wan, Z. Zhang*, H. Niu, Y. Yin, C. Shao, and Y. Guo*, Machine-Learning-Accelerated Catalytic Activity Predictions of Transition Metal Phthalocyanine Dual-Metal-Sites Catalysts for CO2 Reduction, J. Phys. Chem. Lett. 12, 6111 (2021)

科研项目经历

[1] 金属半导体接触物理机制的第一性原理计算研究,广东省基础与应用基础研究基金省市联合基金项目,青年基金,10万元,2022.10-2025.09,主持。

[2] betway必威人才科研启动经费,主持。

[3] 基于驱动集成型氮化镓器件的超小型高效电源适配器的开发,广东省科学技术厅,2017.4-2019.3,200万元,参与。

[4] 基20160046氮化镓电力电子器件中电子陷阱抑制方法研究,深圳市科技创新委员会,2016.2-2019.6,200万元, 参与。

[5] EPSRC grant, Integration of Novel Materials in Spintronic Devices,2016.4-2022.3,合人民币约850万元,参与。

[6] European Union's Horizon 2020 research and innovation program, grant 737109, Phasechange Switch,2017.1-2020.11,合人民币约2790万元,参与。

 

国际会议(仅列一作者)

[1] (特邀报告) Z. Zhang et al. Revealing the Mobility Degradation Mechanism in 4H-SiC MOSFETs by First-principles Calculations, 第十届IEEE下一代电子国际学术会议(ISNE2022), 无锡, 中国 (2022). 

[2] (特邀报告) Z. Zhang et al. P-type oxides for Back-end-of-line Semiconductor Devices, in ICANS29, Nanjing, China (2022). 

[3] Z. Zhang et al. Alternatives to Ga in In-Ga-Zn-O4 amorphous oxide semiconductors, in ICANS29, Nanjing, China (2022). 

[4] Z. Zhang et al. A revisit of the oxidation and passivation mechanisms of SiC/SiO2 interfaces, in 53th IEEE SISC, San Diego, USA (2022).

[5] Z. Zhang et al. Mobility Degradation in 4H-SiC MOSFETs and Interfacial Carbon Cluster Formation, in APCSCRM 2022, Xuzhou, China (2022). 

[6] Z. Zhang et al. Oxidation and passivation mechanisms for SiC/SiO2 interfaces, in 52th IEEE SISC, San Diego, USA (2021).

[7] Z. Zhang et al. P­type oxides in Back­end­of­line Semiconductor Devices, in 52th IEEE SISC, San Diego, USA (2021).

[8] Z. Zhang et al. Mobility Degradation in 4H-SiC MOSFETs and Carbon Cluster Formation, in INFOS 2021, Rende, Italy (2021).

[9] Z. Zhang et al. Impact of termination on Fermi level pinning at rare-earth arsenide/GaAs interfaces, in 51th IEEE SISC, San Diego, USA (2020).

[10] Z. Zhang et al. in Alternatives to Ga in In-Ga-Zn-O4 amorphous oxide semiconductors, in 51th IEEE SISC, San Diego, USA (2020). (口头报告)

[11] Z. Zhang et al. Band alignment calculation of dielectric films on GaN, in 50th IEEE SISC, San Diego, USA (2019).

[12] Z. Zhang et al. Influence of phase on Schottky barrier heights of Ge-Sb-Te based materials, in 50th IEEE SISC, San Diego, USA (2019). 

[13] Z. Zhang et al. Defects of h-BN suitable for single photon emitters, in EPSRC/JSPS/CNRS C2C 2019 Seminar, Sendai, Japan (2019). (口头报告)

[14] Z. Zhang et al. Ge-Sb-Te: Influence of Phase on Schottky Barrier Heights, in EPCOS 2019, Grenoble, France (2019). (口头报告)

[15] Z. Zhang et al. Band alignment and chemical bonding at Sc2O3/GaN interface, in INFOS 2019, Cambridge, UK (2019).

[16] Z. Zhang et al. Density Functional Calculation of Dielectric films on VO2, in INFOS 2019, Cambridge, UK (2019).

[17] Z. Zhang et al. Modification of amorphous-SiNx/GaN Interface Trap Density by Nitridation: A First-Principles Calculation Study, in CS-MANTECH 2018, Austin, USA (2018). (口头报告)

[18] Z. Zhang, B. Li, X. Tang, Q. Qian, M. Hua, B. Huang, and K. J. Chen, Nitridation of GaN Surface for Power Device Application: A First-Principles Study, In 2016 Int. Electron Device Meeting (IEDM 2016), pp. 906-909, Dec., 2016. (口头报告; 电子器件领域最顶尖国际学术会议

[19] Z. Zhang et al. First-Principles Study of GaN Surface Electronic Structures with Ga, O or N Adatom, in 47th IEEE SISC. San Diego, USA (2016). (口头报告)

[20] Z. Zhang et al. Bonding, Stability and Band Offsets of GaN/HfO2 Interface Influenced by Interfacial Oxygen Content: A First-Principles Study, in 45th IEEE SISC, San Diego, USA (2014).

 

所获荣誉

[1] ESI热点文章(前0.1%引用): Adv. Funct. Mater. 31, 2008533 (2021)

[2] ESI高被引文章(前1%引用): ACS Sustainable Chem. Eng. 9, 3590, 2021和ACS Sustainable Chem. Eng. 8, 13749, 2020 

[3] 封面文章: J. Phys. Chem. Lett. 12, 5813, 2021和Mater. Reports: Energy 1, 100046, 2021

[4] 热点文章: J. Mater. Chem. A 8, 6555, 2020和Nanoscale 12, 20025, 2020

[5] ISPSD2017, Charitat Award (for the Best Young Researchers) 最佳青年学者奖, 排名2/7

职位 研究员、博导 邮箱 zhaofuzhang@whu.edu.cn
电话 办公室